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Abstract. This theoretical study of spot development in boundary layers is motivated by the need for some basic 
understanding of nonlinear spots, on which there appears to be little or no previous acceptable theory. The eventual 
aim is to be able to describe theoretically the transitional and/or  turbulent spots which are often investigated 
experimentally. Here, as a starting point to guide possible nonlinear studies, we concentrate in particular on 
relatively long-scale inviscid spot disturbances in the context of the unsteady Euler equations, although short-scale 
with respect to Tollmien-Schlichting lengths for example. Both the incompressible and the compressible ranges are 
examined, for small disturbances, with the corresponding initial-value problems being treated computationally and 
analytically. The spatial spreading rate of the resulting spot is affected significantly by compressibility, and in fact 
tends to zero in the hypersonic extreme. The typical amplitudes provoked downstream and their decay lengths also 
vary considerably with the free-stream Mach number, producing two distinct structures in the transonic regime for 
example and an elongated structure in the hypersonic regime. The downstream behaviour found at comparatively 
large times, for finite Mach numbers, is used to provide guidance for nonlinear theory. There are also some 
potentially useful comparisons and links found with experiments, in both laminar and turbulent conditions. 

1. Introduct ion  

A 'spot disturbance' is the flow perturbation that develops from an initial disturbance, to a 
boundary layer in the present setting, with the typical development involving mostly 
downstream travel, some amplitude growth, and spatial spreading of the spot. The spot is a 
three-dimensional (3D) unsteady phenomenon, in general, and there would appear to be 
basically three types of spot, namely laminar, transitional and turbulent, depending on the 
amplitude and spectra of the initial disturbance. The three types have certain features in 
common, and others not. The two extremes of laminar and turbulent flow are studied 
experimentally and numerically in interesting works by Gaster & Grant (1975), Gaster 
(1975) and by Katz, Seifert & Wygnanski (1990), Riley & Gad-el-Hak (1985) (and 
references therein) for example, respectively, and many other experimental studies have also 
been made in the turbulent case, e.g. see additional references in the papers above and in 
Smith & Burggraf (1985) (SB), Smith, Doorly & Rothmayer (1990) (SDR), Gaster (1990). 
In the present work we start an attempt to theoretically understand the transitional and 
turbulent types of spot, in a compressible or incompressible boundary layer. Some simplifica- 
tion is necessary of course because such spots are very complex in practice, but the aim is to 
compare eventually with the experimental work above on such spots. While some previous 
studies of ad hoc linear theory have been made, little or no systematic theory/analysis has 
been done, as far as we know, especially on nonlinear initial-value problems relevant to 
transitional or turbulent spots, and on the scales and flow structures necessary for a clear 
physical understanding of the spots' behaviour. These aspects in fact provide the setting for 
the current study. 

Concerning a systematic theory, and corresponding modelling, the 3D unsteady Euler 
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system (acting within the boundary layer) is believed to be very relevant to the transitional- 
turbulent regime: see SB, SDR, Walker & Smith (1991) and references therein. Thus SDR 
find agreement between Euler-stage theory and experiments on certain of the established 
scales for fully turbulent flow, pointing to the use of the Euler system coupled with an 
allowance for viscous sublayer bursting. The present investigation is therefore based on 
applying the 3D unsteady Euler system to the study of spot disturbances, this being related 
more to the transitional-turbulent regime than to the laminar one, and indeed we concen- 
trate below on the inviscid dynamics of the initial-value problem for such spots. 

The context for the spot-disturbance analysis is described in Section 2 below, first for an 
incompressible boundary layer (cf. the compressible case below) with an originally inflexion- 
free velocity profile. The main concern is with the 3D Euler setting, for the reasons 
mentioned above, and attention is then focussed on an unsteady 3D thin-layer version 
appropriate to relatively long-scale disturbances. In the thin-layer version the precise details 
of the original boundary-layer profile have negligible effect, apart from the O(1) skin-friction 
factor (A) and the local external velocity. The same version applies for the 3D unsteady 
triple-deck setting, which governs nonlinear Tollmien-Schlichting transitions (Smith 1989), 
provided relatively high-frequency disturbances are considered as described also in Section 2. 
These disturbances are relatively fast and have possible connections with some forms of 
by-pass transition (see in references above), although it should be observed that the 
high-frequency range tends to subjugate, or at least delay, the nonlinear break-up and 
possible intermittency described by Smith (1988), Peridier et al. (1991), Hoyle et al. (1991) 
for the complete 3D triple-deck system. Nevertheless, the break-up can still arise, as Peridier 
et al. show. We should add also that the response of a single or finite number of waves 
provoked by a maintained disturbance (e.g. as in Smith 1984, Smith & Stewart 1987a,b) is 
distinct from the present initial-value setting since here in effect all waves are activated. In 
Section 3, a linearized version is examined, as a first step, permitting a relatively simple 
analysis which produces useful and 'universal' results at large times, this representing an 
advantage over previous linear-disturbance studies, e.g. see references above and Ryzhov 
(1987), Smith (1987a). In particular, concentrated wake activity is found far downstream 
inside a wedge of half-angle sin-l(1/3) = 19.47 ° (in plan view) and the maximum amplitude 
growth occurs at the edges of this wake (cf. the experiments of Wygnanski's group, e.g. 
Glezer, Katz & Wygnanski, 1989). This aspect is the same as for the Kelvin ship-wake 
(Whitham 1974), and as studied in another context by Cheng & Johnson (1982). The 
compressible boundary layer is then addressed in Section 4, yielding some very interesting 
changes in the spot development with increasing Mach number. These include especially the 
transonic range, where two main kinds of spot-disturbance amplitude response appear 
spatially, and the hypersonic range, in which the typical amplitudes produced are much 
reduced but last longer. The change in the wake half-angle mentioned above is also 
considered, as the Mach number increases, with the half-angle being found to tend to zero in 
the hypersonic range. Further comments are provided in Section 5, including suggestions for 
the nonlinear regime. 

It is believed that the nonlinear 3D problems posed in Sections 2 and 4 could be very 
relevant to transitional and turbulent spot behaviour in practice, and further computations 
and analysis are desirable on these. The present first step, on the linear 3D regime, reveals 
certain interesting features of the incompressible and compressible initial-value problems, 
nevertheless, and in fact there are some signs that the experiments tie in qualitatively with 
the overall picture that emerges below, especially regarding the enhanced waviness in the 
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downstream wake. This tie-in is felt likely to increase once nonlinearity is accommodated. In 
the 2D case nonlinearity can lead to the Benjamin-Ono or Burgers equations (SB), after 
some simplification, and indeed the large-time scales found in Sections 3 and 4 agree with the 
scales associated with those equations, but in the more intriguing 3D case the nonlinear 
governing equations do not simplify so readily. The current work however enables estimates 
to be made (in Section 5) for the nonlinear 3D regime, studies of which are in progress 
(F.T.S.), while the results obtained below are also of potential practical value in gauging the 
spread of spots, following an initial disturbance in an incompressible or compressible 
boundary layer. There may be broader interest in addition with regard to the development of 
wavefronts. 

The nondimensional velocity vector u -- (u, v, w) along with the corresponding Cartesian 
coordinates (x, y, z) (streamwise, normal, spanwise, respectively), the pressure p, and the 
time t, are used such that the typical free-stream velocity is (1, 0, 0) and the undisturbed 
steady planar boundary layer has its x, y scales of order 1, Re -1/2 in turn, with a streamwise 
velocity profile written u 0. Here the global Reynolds number Re is taken to be large, for an 
incompressible (Sections 2 and 3) or compressible boundary layer (Section 4), and the 3D 
disturbance develops on length and time scales between O(Re -1/2) and O(1). Some of the 
results from the present work are summarized and used in comparisons by Smith (1987a). 

2. The two main contexts in 3D boundary-layer flow 

There are two major areas in which the present work applies for boundary layers, (a), which 
is perhaps the more relevant to turbulent flow, and (b), which is more concerned with 
transition. These are addressed in turn below. 

(a) The first concerns 3D unsteady Euler flow, in which the velocities and pressure are 
O(1) but the spatial scales are all comparable with the boundary-layer thickness O(Re -1/2) 
and the corresponding time scale is then the convective one, O(Re-l/2).  So the governing 
equations become 

V ' U  = 0  , Ut "1- (U " ~ ) U  : - - ~ p  , V=(Ox, Oy, Oz), (2.1) 

subject to appropriate boundedness conditions in the farfield including matching to the basic 
boundary-layer profile, u = Uo(y ) say upstream, and tangential flow v = 0 at y = 0. One 
solution is u-= (u 0, 0, 0) corresponding to undisturbed parallel motion, but linear and 
nonlinear waves are also possible and are of much interest. Nonlinear phenomena are 
especially important, in 2D or 3D (see SDR and references therein), giving possible 
connections with turbulence. Here we investigate long-scale 3D disturbances in particular, as 
suggested by Section 1, where a three-region structure arises analogous to that in (b) below. 
Thus (x, z ) =  l(X, Z),  say, with the length scale l being large, the main time scale has 
t = 12T, where X, Z, T are typically O(1), and three regions I-III  appear in the y-direction, 
of scales 1-1, 1, l in which y = 1-1y, Y, 13 7 and 

[ u , v , w , p ] =  

[l-lU, I-3V, I - Iw,  l-2p] + . . .  

[Uo + l-lAud, -l-2Axuo(y),  l-2Ol/uo, l-2Pl + . . .  

[1, o, o, 01 + l 2[a 2, 02, w2, + " "  

(2.2a) 

(2.2b) 

(2.2c) 
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in turn. Here P (the pressure), A (the negative displacement), D 1 are unknown functions of 
X, Z, T, with Dtx =- -Pz .  The small-disturbance expansion (2.2b) holding across most of 
the boundary layer satisfies (2.1) to the required order, whereas the near-wall response 
(2.2a) is controlled by the nonlinear unsteady thin-layer system 

~r-U = 0,  {Or+U'~) (U,W)=-(Px ,  Pz), withV=-(Sx, Ov, Oz) 

subject to 

V = 0  at Y = 0 ,  U - ~ ( Y + A ) & W - - - ~ 0  as Y---~o~, 

(2.3a-c) 

(2.3d) 

from (2.1) and matching with (2.2b); and the outermost response (2.2c) leads from (2.1) to 
3D quasi-steady potential-flow properties in the upper reaches of the boundary layer, so that 
fiz satisfies 

2 2 - (o~+a~+az)p2=O, with fi---~P, p2~---~Axx as y ->O,  (2.4a,b) 

again to join to (2.2b), together with boundedness in the farfield. The solution of (2.4) 
therefore gives the relation 

1 f f~ f~  A ~ ( ~ , ~ , T ) d ~ d ~ 7  
P(X, Z, T ) =  -~-~ [ ( X -  ~)2 + ~--~7)-~1/2 • (2.5) 

Hence we are left with solving the nonlinear problem (2.3) allied with the pressure- 
displacement law (2.5). We note in passing that the constant A may be normalised to unity, 
the decay into the large-Y asymptote is algebraic, and a self-consistent initial condition is 
assumed at time T = 0. 

(b) The second context is in 3D nonlinear triple-deck theory, which applies to the initial 
linear or nonlinear development of 3D TS waves and transition (Smith (1988, 1989) and 
references therein) and captures their viscous-inviscid nature. The governing equations here, 
mainly from the lower-deck flow where u, v, w, p, x, y, z, t are scaled with Re -m/8, m = 1, 3, 
1, 2, 3, 5, 3, 2 respectively, are the 3D nonlinear boundary-layer equations 

2 V - u = O ,  {O, + u'V}(u, w)= -(px,  pz) + dr(U, W) , (2.6a,b) 

along with py =--0, the constraints 

u = 0  at y = 0 ,  u - - y + a  and w---~0 as y---~o0 (2.6c,d,e) 

and the pressure-displacement law, which is given by (2.5) with the unknown functions 
(p, a)(x, z, t) replacing (P, A) here. The basic inviscid problem (2.3), (2.5) therefore arises 
again if the viscous terms on the right in (2.6b) are simply neglected. More precisely, as in 
SB, for relatively high frequencies Iorl- f~'> 1 the scalings 

(u,v, w, p ,a ,x ,  y , z , t )  

( ~ ' ~ 1 / 2 U ,  ~~V, ~-~I/2w, IqP, 121/2A, ~-~-l/2x, ~-~1/2y, l.]-l/2Z, f y iT )  (2.7) 

lead to (2.3) coupled with (2.5). 
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In both of the contexts (a), (b) it should be emphasized that, as in 2D flow (SB, SDR), 
vorticity bursting is possible from the viscous sublayer assumed near the wall, in the 
nonlinear setting, although on the other hand bursting is not relevant in the linear regime 
studied subsequently. Further, in the special 2D case a simple solution of (2.3) is available, 
namely U = - Y +  A, and the coupling with (2.5) thereby leads to the Benjamin-Ono 
equation for A(X, T). Unfortunately no such simplification seems available in general in the 
full 3D case (Rothmayer & Smith 1987), and so (2.3), (2.5) as they stand, i.e. in terms of X, 
Y, Z, T, are in effect the 3D counterparts of the nonlinear Benjamin-Ono equation. The 
system (2.3), (2.5) is of much interest, then, in both contexts (a), (b) and as a start we 
concentrate next on one aspect of the system. 

3. Development from an initial spot disturbance 

Aspects of the travel, growth and spreading of an initial localised disturbance are considered 
in (i)-(iii) below. 

(i) Linearized features hold for relatively small disturbances where the basic flow U = Y is 
slightly disturbed. There to leading orders (U - Y, V, W, P, A) = h(/Y, f', if',/5, A), say, with 
h ~ 1, and so (2.3a-c) become 

V - U = O ,  Ov + YIJx + (I= -Dx, (Vr + Yl;Vx= -Pz (3.1a-c) 

with 1~'=0 at Y = 0 ,  /)--*,4 and ff'---~0 as Y---~, and (2.5) holds with (P, .4) instead of 
(P, A). An appropriate solution may be derived from adding together the X-, Z-derivatives 
of (3.1b,c) respectively, which yields a quasi-2D system for (Jx + Wz, f'x whose solution, 
subject to suitable initial conditions, has /-Ix + ff'z independent of Y and hence identically 
equal t o / l  x. That is consistent with the momentum balances provided 

Axr = -(02x + 02z)P. (3.2) 

Hence, combining this with (2.5), we obtain the equation 

f Aee(¢, r/, T) dE dr/ 
2~rAxr = (o2x + o2) .I-~ (3.3) 

for ,4(X, Z, T), with a similar equation governing/5. Here (3.3) is a 3D extension of the 2D 
linearised Benjamin-Ono equation. We should remark that a benign critical layer is present 
in the if" solution; see also later. 

The solution of (3.3) may be found via a double Fourier transform (denoted **) in X, Z, 
which converts (3.3) to iA~*= a ( a 2 +  /32)1/2/Z~ ** w h e r e  a,/3 are the transform variables 
corresponding to X, Z respectively. Hence 

4~'2A(X, Z, T ) =  f ~  f;~ Q(a,/3) exp{iaX + i / 3 Z -  ia (a  2 +/32)1/2T} da  d/3 (3.4) 

where Q(a, fl) is the initial distribution of the negative displacement transform, 
A**(a,/3, 0). Here (3.4) determines the development of the displacement in space and time, 
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a n d  h e n c e  the  p re s su re  f rom (2 .5) ,  for  any  p r e sc r i be d  ini t ial  d i s t r ibu t ion .  W e  no t e  tha t  (3 .4)  

ag rees  wi th  the  d i spe r s ion  re l a t ion  o b t a i n e d  in a l l ied  p rev ious  pa pe r s ,  a l t hough  the  flow 

s t ruc tu re  shown a b o v e  in the  de r iva t i on  of  (3.4)  is wor th  emphas i s ing ,  as d iscussed  la ter .  I t  is 

a p p a r e n t  also tha t  the  d i spe r s ion  re l a t ion  invo lved  yields  on ly  neu t r a l  waves  in the  p r e se n t  

r eg ime .  

1.1 (b) 

Fig. 1. Numerical results for the incompressible case. (See also final page.) 
1.1. (a)(b) Surface plots of disturbance J,(X, 2, T) for very large time T. (T= 256) 
1.2. (a)(b) Surface plot of A(X, 2, T) for short time T. (T = 2) 
1.3. (a) Contour plot of A(X, 2, T) for short (a) and large time (b). (Results symmetric about Z, = 0. At large 

times, the maximum amplitudes are clearly seen to lie along the caustic.) 
1.4. (a) Centreline amplitudes for various values of time T. 

(b) Amplitudes along caustic at various values of T. 
1.5. Amplitude growth along caustic. Theoretical slope = x (since A ~ O ( r t / 3 ) ) ,  computational slope = 0.3. 



(ii) Computations of (3.4) were performed for a number of different initial conditions, by 
use of a spectral scheme. Sample results are shown in Fig. 1. 

(iii) Of special interest now is the behaviour of the flow solution at large times, for O(1) or 
large distances from the start. There (3.4) suggests that significant effects arise mainly in two 
regions far downstream, the first of which has X, Z large and O(T1/2), say (X, Z ) =  
T1/2(X, Z )  = T1/2R(cos O, sin 0). There,  in (3.4), (a,  fl) = T-1/2(tx, fl) = T-1/2r(cos t~, 
sin ~b) in polars, yielding 

27rA ~ T- 'Q(O,  0) ~ FJo(~) d?  with (I)2 = F2R 2 - 2F3R cos 0 + ~4, (3.5) 

0.5 

.0 

after a ~b-integration, where Jo is the standard Bessel function of zeroth order. Here (3.5) 
gives most of the large-time behaviour for O(1) values of the scaled distance R--- 

0.5 

O: 
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1.2 (a) 

0.5 
t 

O. 

1.2 (b) 

3.5 

0 

Fig. I (cont.). 
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Fig. 1 (cont.). 

(X 2 + z2)l/2T-1/2 and angles 0. The constant Q(0, 0) is an integral property of the initial 

displacement, specifically the double integral with respect to X, Z of the initial disturbance 
A(X,  Z, 0). For  smaller R values, the range 7 -  1 dominates, giving 

.31~ T-~Q(O, O){Cl + c2T-'/ZX + O ( T - 1 ) }  [for R ' ~ I ]  (3.6) 

where cl, c 2 are constants, whereas for larger distances R the beginning of a confined 'wake' 
can be distinguished. For then the range 7 = o-R >> 1 matters, giving @2 = R4(o-2 _ 2o.3c + o-4) 
>> 1 [where c = cos 0] and so J0(@) -- (2/w@) 1/2 cos(@ - ~r/4). The major effects therefore 
come from the maxima of h(o-) -= (o -2 - 2o-3c + o-a), since J0 is predominantly oscillatory. But 
h'(o-) = 2o-{2(0- - 3c/4)  2 + (1 - 9c2/8)}. So the maxima are possible only for c 2 > 8/9,  i.e. at 

angles 101 < 0s where 

0s = s i n - l (  1 ) = 19.47 ° . (3.7) 

For  such angles, (3.5) then gives the asymptote 
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Fig. 1 (cont . ) .  
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[ o ~  o'1- cos(ReB i_)] 21%rA ~ T - 1 Q ( O ,  O) (B1B;)I/2 cos(R2B;) Jv (B?B---~)I/2 

for R >> 1 with -0~ < 0 < 0 s , (3.8a) 

consisting of two wave forms in which 

B,(O) = (0"~ - 20"~c + 0"~)112 , (3.8b) 

1 2 - 1  Bz(O ) = ~ (1 - 60"1c + 60"1)B , , 1 _ 8 ) 1 / 2 }  . o'1(0 ) = ~ {3c -+ (9c e (3.8c,d) 

From this it can be seen that increasingly concentrated (i.e. relatively short-wavelength) 
waves form in the wake far downstream, with their maximum amplitudes occurring at the 
edges 0 ~ +-Os, since B 2 --+ 0, Bx--+ O(1) as 101--, 0~. Near each edge (or caustic), a relatively 
thin layer is present in which A acquires the form of an Airy function, matching with (3.8a) 
inside the wake and with the exponentially small response outside (for 101 > 0s). In detail, 
(3.5) gives 

( 8-TF ~ 1/2 (2~ 1/3 
2rrA-~--fi-)ol 0-1~a) R1/3cos(nlR2)mi(lq), for R>>I near 0 = 0 s ,  (3.9) 

where  gl~21/2ff(4/33-1/3(Z/S-8 -I/2) is O(1) in the edge layer and now 0-1 = 3 c / 4 ,  
n I = 3-1/2/2, c = 3-12 3/2, ) (  = cR, a = 25/231/2. 

The second region, further downstream, occurs where the distances X, Z are increased to 
O(T), cf. Figs 1.3, 1.4 and below. There, in view of (3.5)ff, the major contributions to the 
integral (3.4) come from O(1) values of a, /3.  So the new feature emerging here is that the 
detailed distribution Q(a,/3) now modifies the solution amplitude at leading order, i.e. this 
region feels the 'footprint '  of the initial disturbance A(X, Z, 0). There are again two wave 
families present containing an infinite number of waves analogous with those in (3.8a) but 
the typical wavelength is reduced to O(1). Moreover, the wake remains confined to [0[ < 0,, 

/ 

! 

/ 
/ 

m a x  A 0 ( T ½) 

I -  ~ ~ / /  _ T y p i c a l  

u 0 ( l x l )  Os or  0 ¢  

' 1 - - e  I , ×  

j 

O(T)  ~ -~ 

Fig. 2. Sketch of the structure for the large-time large-distance behaviour. Plan view: upper half only. 
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with a modified form of (3.9) applying in an edge region of thickness O(T ]/3) in terms of 
Z - 8-1/ZX. The final downstream decay of the solution is then obtained at distances greater 
than O(T).  

The analytical features here, summarized in Fig. 2, are also well brought out in the 
computed results of Fig. 1, and there is broad agreement in fact with the computational 
trends obtained in (ii) above. We refer in particular to Figs 1.4a, 1.4b concerning the 
centre-line and the near-caustic calculations, as time T increases, and note that the slope of 
the log-log plot in Fig. 1.5 at large distances is very close to ~, cf. (3.9). 

4. The compressible regime 

Most of the reasoning in Section 2 for the 3D nonlinearly disturbed incompressible boundary 
layer can be adapted also for the compressible case studied next. Thus, from scaling of the 
unsteady compressible Euler equations, (2.3a-d) still hold, but the outer potential-flow part 
in (2.4a,b) or (2.5) must be replaced by 

( M2 - 1)(fi2xx +- fi2~)7) - fi2zz = 0 (4.1a,b) 

(e.g. as in Smith 1989), along with (2.4b), for the subsonic ( 0 ~  < M= < 1) and supersonic 
(M= > 1) ranges respectively, where M® is the Mach number. [Shorter-scale contributions 
are omitted; see Section 5]. In consequence the linearized properties replacing those of 
Section 3 are as follows, for the development from an initial spot disturbance. 

In the subsonic regime, (4.1a) leads to the result 

i a (a  2 +/32)T 
4*r2A(X, Z, T ) =  f_~ f_~ Q(a , /3)  exp{iaX + i / 3 Z -  (-d5 + ~ - 2 ~  j d a  d/3 (4.2) 

for the negative displacement, with K = (1 - M 2 )  -1 /2  ranging from 1 to ~. Spectral computa- 
tions for (4.2) were performed as in Section 3(ii) at several subsonic Mach numbers, giving 
the results shown in Fig. 3. Analytically, rather than proceeding as in Section 3(iii) we may 
use the method of stationary phase to deduce the large-time behaviour, setting (X, Z)  = 
TU2R(cos O, sin 0), (a , /3)  = T - 1 / 2 r ( c o s  t~, sin 4)) again and then ~= trR, to convert (4.2) to 
the form 

47r2ft-Q(O,O)T-1R2fof2"~exp{i[trcos(~b-O)-tr2c°sqbqK---~JR 21~o- do" d~b (4.3a) 

for large distances R, where 

K(,;b) -= (cos2(b + K 2 sineth) '/2 . (4.3b) 

The maximum contributions to ,4 at large R therefore come from the extrema of the 
expression in square brackets in (4.3a). With the derivatives of that expression, with respect 
to o-, th, equated to zero, then, we obtain two equations to determine the extremal values of 
tr, ~b, leading to the equation 

K2X 4 tan 0 - KzX 3 + 3K2X 2 tan 0 + (K 2 - 2)X + 2tan 0 = 0 (4.4) 
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Fig. 3. Numerical results for subsonic range. (See also final page.) 
3.1. Contours of disturbance amplitude at large time for M = 0.9. 
3.2. Surface plot at M = 0.9 for large time. 
3.3. Intermediate time (T = 16) results for M = 0.9. 
3.4. Results for same time, but M = 0.98. 

The nearly planar waves predicted by tbeory are clearly evident, as is their persistence after the centreline 
waves die out. 

3.5. Surface plot (for 2 > 0) showing persistence of plane waves at M = 0.98, T = 16. 
3.6. Comparison of centreline amplitude for M = 0.9, M = 0.98 at T = 16. Note very rapid initial growth at higher 

Mach number, but more rapid subsequent decay. 

for  X ~ t a n  d~. P o t e n t i a l l y  t h e r e  a re  f o u r  m a i n  waves  pos s ib l e  d o w n s t r e a m  n o w  r a t h e r  t h a n  

j u s t  two  as in S e c t i o n  3( i i i ) ;  see  also ( 4 . 1 5 a - c )  l a te r .  W e  o b s e r v e  also t h a t  t he  s o l u t i o n s  n e a r  

t he  e dge s  of  the  wake(s )  d o w n s t r e a m  are  still d e s c r i b e d  b y  a n  A i r y  f u n c t i o n ,  as in  S e c t i o n  

3( i i i ) ,  a n d  the  u l t i m a t e  d o w n s t r e a m  decay  at la rge  t imes  T is a s soc i a t ed  w i th  l a rge r  d i s t ances ,  

o f  o r d e r  T, s imi la r ly  to Sec t i on  3( i i i ) ,  at g e n e r a l  M a c h  n u m b e r s  in  t he  s u b s o n i c  or  s u p e r s o n i c  

r a n g e .  
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Fig. 3 ( c o n t . ) .  

Two special limits are of most interest next. First, in the incompressible limit M=---> 0, 
K--->I+, only two waves remain since (4.4) then yields only two real roots 
X = {1 - (1 - 8 tan20) 1/2}/(2 tan 0), the other two roots being imaginary, X = - i .  The two 
real roots here confirm the results in Section 3(iii) and in particular the half-wake angle of 
t a n - l ( 8  -1/2) = 19.47 °. Second, in the transonic limit M=---> 1 - ,  K---> ~, there can be four real 
roots,  three of which are governed by 

3 X 2  X t a n 0 -  + 3  X t a n 0 + l = 0  (4.5) 

with X of O(1) ,  when 0 is O(1),  whereas the fourth root has IxI ~ 1, from (4.4). One root of 
(4.5) is negative and persists for all angles 0, starting at X = - 1  for zero 0, then increasing 
monotonically with 0 and tending to zero from below as 0--* ~-/2. The other two, positive, 
roots of (4.5) start at X = 1, ~ in effect for 0 = 0, then increase/decrease with 0 respectively 
and coalesce at X = 6 t an  0 c / ( 1 -  9tan20c) for 0 = 0c, thereafter  becoming irrelevant (com- 
plex) for 0 > 0~, where 

0c = t an - l [ (9  + 6V-3)-1'21 = 12.79 ° (4.6) 
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defines a cut-off angle. Further,  at sufficiently large angles 0 -  7r/2 - O(K -~) the negative 
root  from (4.5) and the fourth root mentioned above become comparable and are associated 

- 1  N 

with a distinct structure in which tan 0 - Kb, X ~ K X typically, with b, )~ of order  unity. 
Then  (4.4) gives a quadratic equation for ~,, yielding the two roots 

)~ = [ - 1  +- {1 - 24bZ}l/z]/(6b) (4.7a) 

and hence the second cut-off criterion 
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-1 (4.7b) 0 ~ -~ -- (24)1/2K 

Thus the roots (4.7a) correspond to wide waves, of quasi-planar form. An additional feature 
here, however, concerns the wave amplitudes. The roots in (4.5) correspond to the scalings 

(0/, t~) = ,  1/2(0/,, t3*), ( x ,  z )  = , , -1'2(x*,  z * ) ,  (4.8a,b) 

effectively, thereby altering the right-hand side in (4.2) to the form 

K f f exp{i0/*X* + i /3*Z*-  i0/*(0/.2 + fl*2)T/fl*) do/* d/3*, (4.80 

apart from the Q factor. In consequence, although the associated downstream solution has 
increased amplitude of order K, it decays fast spatially, in length scales reduced by O(K-1/2). 
By contrast, the roots in (4.7a) point to the scalings 

(0/, t~) = (0/, , , - l t7) ,  ( x ,  z )  = ( x ,  , , 2 ) ,  (4.9a,b) 

reducing the right-hand side of (4.2) to 

K - l f f e x p { i 0 / X + i ~  i0/3T ~ (0/2 + ~2)1/2 j do/dt~,  (4.90 

except for effects due to Q. Hence this contribution to the downstream response starts with 
less amplitude, of order K -1, but then lasts longer since the X-scale stays at O(1). Here 
(4.8c), (4.9c), when subjected to analysis as in (4.3a,b)ff, can be shown to produce the root 
equations (4.5), (4.7a), in turn, as expected. More significantly, all the above transonic-flow 
features, namely (4.6), (4.8a-c) for the finite-angle waves, and (4.7b), (4.9a-c) for the wide 
quasi-planar waves, are closely in keeping with the computational results of Fig. 3 at Mach 
numbers near unity. The relatively rapid spatial decay of the finite-angle contributions, 
compared with the slow spatial decay of the initially smaller quasi-planar contributions, is 
particularly noticeable. 

In the supersonic regime, (4.1b) applies and so, in (4.2), 

(0/2 + K2/32),/2 is replaced by (K~/32 - 012)  1/2 , (4.10) 

with K 1 ~-(M 2 - 1 )  -1/2 ranging from 0 to 0% and the integration domain is restricted to 
I0/I < K11/3 I. Again, we obtained computational solutions of (4.2) with (4.10) at several 
supersonic Mach numbers, as shown in Fig. 4. The analytical working for large times and 
distances is similar to that for the subsonic case except that now 

K(~b) = (K~ sin2¢ - c 0 8 2 ¢ )  1/2 (4.11) 

and hence (4.4)is replaced by 

K~X 4 tan 0 -  K~X 3 + 3K~X 2 tan O + (K~ + 2 ) X -  2tan O = 0. (4.12) 
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The transonic limit, as M=--* 1+, Kl--*oo, is therefore broadly the same as for M=--> 1 - ,  in 
(4.5)-(4.9c). The hypersonic limit, on the other hand, is associated mainly with small angles 
of spreading downstream. Here M= >> 1, K 1 --> 0, and the dominant effects are confined to the 
interval where 0 = K10, g = KI-IX with 0, ~ of O(1). So from (4.12) the governing equation 
for the four roots present reduces to 

~ 4 ~  _ )~3  ..{_ 2~ = 0.  (4.13) 

For small 0 the four roots are at )~ = ---21/2, 0, +~  in effect. Their behaviour for increasing 
is then analogous with that in the previous transonic-flow analysis, and in particular a double 
root and consequent cut-off arise at )~ = 61/2 for 0 = 3-3/221/2, i.e. for the small angle 

0 = 0 c ~ 3 - 3 / 2 2 1 / 2 M ~  1 . (4.14a) 

Concerning the hypersonic amplitudes provoked, the scalings involved now have 

(a , /3 ,  X, Z)  = O(K1, 1, K; -1, 1).  (4.14b) 

As a result, the typical amplitude is reduced by a factor KI(~M~I), from (4.2), but the 
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typical wake length of the spot increases by a factor Kll(~M=),  at least in terms of the 
present coordinates. The analytical properties above again agree well with the computations 
(Fig. 4). Indeed, all the different decay rates summarized in (4.8b), (4.9b), (4.14b) are 
evident numerically in Figs 3 and 4 with the long scale (4.14b) for the hypersonic regime 
being particular clear in Fig. 4. 

There are two final points of interest here, the first of which concerns the spot response 
near the line of symmetry, where 0---~0. In the subsonic range (4.4) gives the two roots 

X = --(1 - 2K-2)1/2, (4.15a) 

apart from those at small and large X. Hence the crossover from two to four waves 
downstream occurs at the subsonic Mach number 

M= = 2 -1/2 . (4.15b) 

(Dr R.I. Bowles, private communication 1991, has kindly pointed out to us that at the 
crossover value (4.15b) the spanwise group velocity becomes negative, opposite in sign to the 
spanwise velocity.) The four-wave description also continues throughout the supersonic 
range, with the two finite-x roots been given by 

)( = --(1 + 2K12) 1/2 , (4.15c) 

from (4.12). These are continuous with the roots (4.15a) in the transonic limit, both sets then 
agreeing with the limiting result (4.5). Second, the scales quoted in (4.8), (4.9), (4.14b) hold 
outside the edge layers that arise near the caustics. In contrast, the amplitude maxima tend 
to occur inside these layers, cf. (3.9). For the transonic limit for instance the maximum 
amplitude is found to increase like KS/6T 1/3, being attained where X is O(K-1T), for the 
contributions corresponding to (4.8), whereas the edge-layer maximum corresponding to 
(4.9) decreases like K-1T1/3, being attained at X = O(T). Likewise, the hypersonic limit can 
be analyzed for its edge-layer response, yielding a maximum amplitude which decreases as 

4/3T1/3 K 1 and is reached at distances X of order T. These results again are in good agreement 
with the computations of Figs 3 and 4. 

5. Further comments  

An investigation into initial-value problems for spots in incompressible or compressible 
boundary layers has been presented above. Figure 5 summarizes the complete Mach-number 
range, as regards the wake half-angles computed far downstream, and, as with other 
quantities, there is good agreement with the analysis. The results, throughout Sections 3 and 
4, are felt to be of potential practical value in characterizing the downstream progress of 
spots after an initial disturbance to the boundary layer. The theory developed so far would 
not necessarily be expected to be applicable directly to previously computed or experimen- 
tally observed spots, at least not until nonlinearity is incorporated (see below), but there is 
some measure of agreement nevertheless. The main analytical prediction in the incompress- 
ible case concerns the concentrated wake effect inside a wedge of half-angle 19.47 ° 
downstream (as for Kelvin's ship wake, see Section 1), with the maximum disturbance 
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Fig. 5. Summary. Wake half-angle versus Mach number, including comparison between theory and computation. 

amplitude occurring near the edges of the wake and with multiple waves in-between. 
Comparisons between this theoretical response and computational results for the 3D 
triple-deck problem (see Section 2) are presented by Smith (1987a) and are fairly affirmative; 
see also Duck (1987), Ryzhov (1987). Comparisons with Gaster & Grant's (1975) laminar- 
spot experiments are also quite encouraging (Smith 1987a), including the accentuated edge 
effects downstream at relatively large times, even though in these comparisons and those 
mentioned in the previous sentence the theory tends to over-estimate the half-angle 
downstream. Concerning transitional and turbulent spots, there is some additional encour- 
agement both from the general 3D structure (Sections 3 and 4) with multiple waves present 
downstream, suggesting the study of nonlinear effects there, and from Glezer et al.'s (1989) 
experimental study focussing on effects near, and just trailing, the edges of spots. In the 
compressible case, the most interesting features found in the spot development are the 
changes in the flow scales, structure, and disturbance amplitude, as well as in the wake 
half-angle, as the Mach number increases [these changes are apart from other factors due to 
the scalings leading to (2.3) with (4.1), e.g. see Smith 1989]. This is especially so for the 
transonic and hypersonic ranges, as Section 4 above shows, e.g. with the transonic range 
producing two spatially distinct kinds of amplitude response downstream, while in the 
hypersonic range the wake-spreading angle tends to zero. 

There are many other areas of possible applications. The influence of cross-flow in the 
original boundary layer can be incorporated similarly to compressibility effects in Section 4, 
i.e. by alteration of the pressure-displacement interaction law as in Smith & Stewart (1987b). 
Channel flows, jets, liquid-layer flows, in certain regimes, and other flows with other 
interaction laws all require study, as do shorter-scale Rayleigh wave contributions in the 
incompressible or compressible boundary layer (e.g. Mack 1984, Malik 1987, Brown & Smith 
1990) and non-aerodynamic flows. In channel flows, for example, the corresponding wake 
half-angle is increased to 30 ° . Spot-disturbance experiments in channel flows, with reduced 
initial amplitudes, could be of much interest. 
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Several other applications and consequences suggest themselves, but the nonlinear aspects 
within the context of Section 2 seem most worthy of emphasis. Among these, there are the 
3D nonlinear vortex structures pointed out by Smith (1987b); the wall-sublayer and 
micro-scales within the Euler stage (SDR); the possibility of small-scale vortex-wave 
interactions within the present scales; short- or long-scale effects in the spanwise direction; 
and the eventual occurrence of interactive break-up during sublayer eruption near the wall 
(Smith 1988, Peridier et al. 1991), as mentioned in Section 1. The most immediate impact of 
nonlinearity, however, can be seen in the downstream asymptotes of Section 3, for the 
incompressible regime, and in particular in the finding that the maximum disturbance 
amplitude occurs in comparatively thin edge-regions. One would therefore expect nonlinear 
effects to become important first in the edge-regions, rather than in the middle part of the 
far-wake. Here, as a guide for a subsequent nonlinear study, we note the following. In the 
edge region, if 

A oc T - 1 / 2 ( X T - 1 / 2 ) N A ( r l )  + . .  • at  large X, T (with T 1/2 "~ g ' ~  T )  (5.1) 

(cf. (3.9)), approximately, with corresponding expansions for the other flow variables in 
(2.3), (2.5), and appropriately scaled co-ordinates, then substitution into the latter nonlinear 
equations leads eventually to an Airy equation for A(a~), exactly consistent with the form 
(3.9) as expected, provided that the displacement in (5.1) is sufficiently small, specifically 
N < N O for some critical value N 0. If N = N 0, however, nonlinear terms enter to alter the 
governing equation. A similar estimate applies to the compressible regime of Section 4. 
Research on these matters is in progress, by F.T.S., who suggests that N O can equal i or zero 
depending on the flow conditions. It can be shown further that the asymptote (3.9) and its 
counterpart (5.1) in the nonlinear case hold also for the full Euler system (2.1), such that at 
large times (t) there are in effect two main areas of activity in the spot, namely at distances 
of orders t t/2 and t downstream, just as in Fig. 2. 

Thanks are due to AFOSR (grant no. 89-0475) from F.T.S. and SERC from D.J.D. for 
support of this and related work. 
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Computational results 

U s i n g  the  t r a n s f o r m a t i o n  

( X ,  Z )  = T~ '2 (2 ,  2 ) ,  

(o~, ~ )  = T - " 2 ( ~ ,  ~ )  , 

the  c o m p u t a t i o n a l  resul ts  show T . . 4 ( X ,  Z ,  T ) ,  with Q(~ ,  ~,  T)  = e x p [ - ( a  2 + / 3 2 , ) / 1 6 .  T], 
for  va r ious  va lues  o f  t ime ,  T, and  Mach  n u m b e r  M,  in Figs 1, 3, 4. 


